Open Access
Issue |
Regen Med Res
Volume 8, 2020
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/rmr/200001 | |
Published online | 20 October 2020 |
- Cata JP, Weng H, Lee B, Reuben JM, Dougherty PM (2006) Clinical and experimental findings in humans and animals with chemotherapy-induced peripheral neuropathy. Minerva Anestesiol 72, 151–169. [Google Scholar]
- Hagiwara H, Sunada Y (2004) Mechanism of taxane neurotoxicity. Breast Cancer 11, 82–85. [CrossRef] [PubMed] [Google Scholar]
- Verheyen A, Peeraer E, Nuydens R, Dhondt J, Poesen K, Pintelon I, et al. (2012) Systemic anti-vascular endothelial growth factor therapies induce a painful sensory neuropathy. Brain 135, 2629–2641. [CrossRef] [PubMed] [Google Scholar]
- Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51, 240–264. [CrossRef] [PubMed] [Google Scholar]
- Austin PJ, Moalemtaylor G (2010) The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol 229, 26–50. [CrossRef] [PubMed] [Google Scholar]
- Park SB, Goldstein D, Krishnan AV, Lin CSY, Friedlander M, Cassidy JT, et al. (2013) Chemotherapy‐induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 63, 419–437. [CrossRef] [PubMed] [Google Scholar]
- Caulfield MP (1993) Muscarinic receptors–characterization, coupling and function. Pharmacol Ther 58, 319–379. [CrossRef] [PubMed] [Google Scholar]
- Makker PGS, Duffy SS, Lees JG, Perera CJ, Tonkin RS, Butovsky O, et al. (2017) Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS One 12, 1–24. [CrossRef] [PubMed] [Google Scholar]
- Vallejo R, Tilley DM, Vogel LA, Benyamin RM (2010) The role of Glia and the immune system in the development and maintenance of neuropathic pain. Pain Practice 10, 167–184. [CrossRef] [Google Scholar]
- Xu Y, Cheng G, Zhu Y, Zhang X, Pu S, Wu J, et al. (2016) Anti-nociceptive roles of the glia-specific metabolic inhibitor fluorocitrate in paclitaxel-evoked neuropathic pain. Acta Bioch Bioph Sin 48, 902–908. [CrossRef] [Google Scholar]
- Wong CH, Iskandar K, Yadav SK, Hirpara JL, Loh T, Pervaiz S (2010) Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by Ros-dependent Erk and Jnk activation. PLoS One 5, 1–12. [CrossRef] [PubMed] [Google Scholar]
- Li Y, Zhang H, Kosturakis AK, Cassidy RM, Zhang H, Kennamerchapman RM, et al. (2015) Mapk signaling downstream to Tlr4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav Immun 49, 255–266. [CrossRef] [PubMed] [Google Scholar]
- Karim F, Wang C, Gereau RW (2001) Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 21, 3771–3779. [CrossRef] [PubMed] [Google Scholar]
- Kim HK, Hwang SH, Lee SO, Kim SH, Abdi S (2016) Pentoxifylline ameliorates mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathic pain. Pain Phys 19, 589–600. [Google Scholar]
- Wenji C (2008) Professor Huang Huang's experience in application of “Siwei Jianbu Decoction”. Shanghai J Tradit Chin Med 42, 10–12. [Google Scholar]
- Hong L, Rongtao H, Wenlong H, Zhonghan X, Canmin Z (2009) Analysis on the epidemic characteristics of the epidemic hemorrhagic fever in Fujian Province from 2004 to 2007. Chin J Zoonoses 25, 59–62. [Google Scholar]
- Rowinsky EK, Donehower RC (1995) Drug therapy: paclitaxel (Taxol). New Engl J Med 332, 1004–1014. [CrossRef] [Google Scholar]
- Dimopoulou I, Bamias A, Lyberopoulos P, Dimopoulos MA (2006) Pulmonary toxicity from novel antineoplastic agents. Ann Oncol 17, 372–379. [CrossRef] [PubMed] [Google Scholar]
- Matsumoto M, Inoue M, Hald A, Xie W, Ueda H (2006) Inhibition of paclitaxel-induced a-fiber hypersensitization by gabapentin. J Pharmacol Exp Ther 318, 735–740. [CrossRef] [PubMed] [Google Scholar]
- Smith SB, Crager SE, Mogil JS (2004) Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains. Life Sci 74, 2593–2604. [CrossRef] [PubMed] [Google Scholar]
- Kamei J, Hayashi S, Sakai A, Nakanishi Y, Kai M, Ikegami M, et al. (2017) Rikkunshito prevents paclitaxel-induced peripheral neuropathy through the suppression of the nuclear factor Kappa B (Nfκb) phosphorylation in spinal cord of mice. PLoS One 12, 1–18. [CrossRef] [PubMed] [Google Scholar]
- Xie P, Cui L, Shan Y, Kang W (2017) Antithrombotic effect and mechanism of radix Paeoniae Rubra. BioMed Res Int 2017, 1–14. [Google Scholar]
- Mannelli LDC, Piccolo M, Maione F, Ferraro MG, Irace C, De Feo V, et al. (2018) Tanshinones from salvia miltiorrhiza bunge revert chemotherapy-induced neuropathic pain and reduce glioblastoma cells malignancy. Biomed Pharmacother 105, 1042–1049. [CrossRef] [PubMed] [Google Scholar]
- Lin L, Tsai F, Lan W, Cheng Y, Lee S, Wu C (2019) Steroid-enriched fraction of achyranthes bidentata protects amyloid Β peptide 1-40-induced cognitive dysfunction and neuroinflammation in rats. Mol Neurobiol 56, 5671–5688. [CrossRef] [PubMed] [Google Scholar]
- Song T, Chen X, Lee CK, Sze SCW, Feng Y, Yang Z, et al. (2019) Dendrobine targeting Jnk stress signaling to sensitize chemotoxicity of cisplatin against non-small cell lung cancer cells in vitro and in vivo. Phytomedicine 53, 18–27. [CrossRef] [PubMed] [Google Scholar]
- Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ, et al. (2006) Paclitaxel-induced nuclear translocation of Foxo3a in breast cancer cells is mediated by C-Jun Nh2-terminal kinase and Akt. Cancer Res 66, 212–220. [CrossRef] [Google Scholar]
- Li D, Huang Z, Ling Y, Wei J, Cui Y, Zhang X, et al. (2015) Up-regulation of Cx3cl1 via nuclear factor-Κb-dependent histone acetylation is involved in paclitaxel-induced peripheral neuropathy. Anesthesiology 122, 1142–1151. [CrossRef] [Google Scholar]
- Wang X, Lehky TJ, Brell JM, Dorsey SG (2012) Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 59, 3–9. [CrossRef] [Google Scholar]
- Yang KY, Bae WS, Kim MJ, Bae YC, Kim YJ, Kim HJ, et al. (2013) Participation of the central P38 and Erk1/2 pathways in Il-1β-induced sensitization of nociception in rats. Prog Neuropsychopharmacol Biol Psychiatry 46, 98–104. [CrossRef] [PubMed] [Google Scholar]
- Barnes PJ, Karin M (1997) Nuclear factor-Kappab: a pivotal transcription factor in chronic inflammatory diseases. New Engl J Med 336, 1066–1071. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.