Open Access
Regen Med Res
Volume 7, 2019
Article Number 3
Number of page(s) 13
Published online 31 December 2019
  1. Akyala AI, Peppelenbosch MP (2018), Gastric cancer and Hedgehog signaling pathway: emerging new paradigms. Genes Cancer 9, 1–10. [PubMed] [Google Scholar]
  2. Allen M, Grachtchouk M, Sheng H, Grachtchouk V, Wang A, Wei L, Liu J, Ramirez A, Metzger D, Chambon P, Jorcano J, Dlugosz AA (2003), Hedgehog signaling regulates sebaceous gland development. Am J Pathol 163, 2173–2178. [CrossRef] [PubMed] [Google Scholar]
  3. Almeida R, Almeida J, Shoshkes M, Mendes N, Mesquita P, Silva E, Van Seuningen I, Reis CA, Santos-Silva F, David L (2005), OCT-1 is over-expressed in intestinal metaplasia and intestinal gastric carcinomas and binds to, but does not transactivate, CDX2 in gastric cells. J Pathol 207, 396–401. [CrossRef] [PubMed] [Google Scholar]
  4. Antonucci L, Di Magno L, D'Amico D, Manni S, Serrao SM, Di Pastena F, Bordone R, Yurtsever ZN, Caimano M, Petroni M, Giorgi A, Schinina ME, Yates IJ, Di Marcotullio L, De Smaele E, Checquolo S, Capalbo C, Agostinelli E, Maroder M, Coni S, Canettieri G (2019), Mitogen-activated kinase kinase kinase 1 inhibits hedgehog signaling and medulloblastoma growth through GLI1 phosphorylation. Int J Oncol 54, 505–514. [PubMed] [Google Scholar]
  5. Barakat MT, Humke EW, Scott MP (2010), Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med 16, 337–348. [CrossRef] [PubMed] [Google Scholar]
  6. Barker N, van Es JH, Jaks V, Kasper M, Snippert H, Toftgard R, Clevers H (2008), Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb Symp Quant Biol 73, 351–356. [CrossRef] [PubMed] [Google Scholar]
  7. Beauchamp EM, Ringer L, Bulut G, Sajwan KP, Hall MD, Lee YC, Peaceman D, Ozdemirli M, Rodriguez O, Macdonald TJ, Albanese C, Toretsky JA, Uren A (2011), Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest 121, 148–160. [CrossRef] [PubMed] [Google Scholar]
  8. Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK (2009), The primary cilium as a complex signaling center. Curr Biol 19, R526–R535. [CrossRef] [PubMed] [Google Scholar]
  9. Berman DM, Karhadkar SS, Maitra A, Montes DOR, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA (2003), Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851. [Google Scholar]
  10. Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP (2006), Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. Plos Biol 4, e232. [PubMed] [Google Scholar]
  11. Bitgood MJ, McMahon AP (1995), Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 172, 126–138. [CrossRef] [PubMed] [Google Scholar]
  12. Borzillo GV, Lippa B (2005), The Hedgehog signaling pathway as a target for anticancer drug discovery. Curr Top Med Chem 5, 147–157. [CrossRef] [PubMed] [Google Scholar]
  13. Bosanac I, Maun HR, Scales SJ, Wen X, Lingel A, Bazan JF, de Sauvage FJ, Hymowitz SG, Lazarus RA (2009), The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling. Nat Struct Mol Biol 16, 691–697. [CrossRef] [PubMed] [Google Scholar]
  14. Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA (2012), Noncanonical Hedgehog signaling. Vitam Horm 88, 55–72. [CrossRef] [PubMed] [Google Scholar]
  15. Briscoe J, Therond PP (2013), The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14, 416–429. [CrossRef] [PubMed] [Google Scholar]
  16. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011), Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell stem cell 8, 552–565. [Google Scholar]
  17. Chavez M, Ena S, Van Sande J, de Kerchove DA, Schurmans S, Schiffmann SN (2015), Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output. Dev Cell 34, 338–350. [CrossRef] [PubMed] [Google Scholar]
  18. Chen Y, Struhl G (1998), In vivo evidence that Patched and Smoothened constitute distinct binding and transducing components of a Hedgehog receptor complex. Development. 125, 4943–4948. [PubMed] [Google Scholar]
  19. Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, Cooper MK, Gaffield W, Westphal H, Beachy PA, Dlugosz AA (1999), Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 205, 1–9. [CrossRef] [PubMed] [Google Scholar]
  20. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996), Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413. [Google Scholar]
  21. Chuang PT, McMahon AP (1999), Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621. [Google Scholar]
  22. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005), Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021. [Google Scholar]
  23. Davenport JR, Yoder BK (2005), An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289, F1159–F1169. [CrossRef] [PubMed] [Google Scholar]
  24. Dennler S, Andre J, Verrecchia F, Mauviel A (2009), Cloning of the human GLI2 Promoter: transcriptional activation by transforming growth factor-beta via SMAD3/beta-catenin cooperation. J Biol Chem 284, 31523–31531. [CrossRef] [PubMed] [Google Scholar]
  25. Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen JW, Phamluong K, Davis M, Scales SJ, Solloway MJ, de Sauvage FJ, Peterson AS (2009), The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol 19, 1320–1326. [CrossRef] [PubMed] [Google Scholar]
  26. Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996), Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673. [CrossRef] [PubMed] [Google Scholar]
  27. Fan J, Zhang X, Wang S, Chen W, Li Y, Zeng X, Wang Y, Luan J, Li L, Wang Z, Sun X, Shen B, Ju D (2019), Regulating autophagy facilitated therapeutic efficacy of the sonic Hedgehog pathway inhibition on lung adenocarcinoma through GLI2 suppression and ROS production. Cell Death Dis 10, 626. [CrossRef] [PubMed] [Google Scholar]
  28. Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N (2014), Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer 50, 1330–1344. [CrossRef] [PubMed] [Google Scholar]
  29. Ferruzzi P, Mennillo F, De Rosa A, Giordano C, Rossi M, Benedetti G, Magrini R, Pericot MG, Miragliotta V, Magnoni L, Mori E, Thomas R, Tunici P, Bakker A (2012), In vitro and in vivo characterization of a novel Hedgehog signaling antagonist in human glioblastoma cell lines. Int J Cancer 131, E33–E44. [CrossRef] [PubMed] [Google Scholar]
  30. Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D, Wang FY, Jones S, Shulok J, Rubin LL, Porter JA (2002), Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J Biol 1, 10. [CrossRef] [PubMed] [Google Scholar]
  31. Fuse N, Maiti T, Wang B, Porter JA, Hall TM, Leahy DJ, Beachy PA (1999), Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc Natl Acad Sci U S A 96, 10992–10999. [CrossRef] [PubMed] [Google Scholar]
  32. Goldstein JL, DeBose-Boyd RA, Brown MS (2006), Protein sensors for membrane sterols. Cell 124, 35–46. [CrossRef] [PubMed] [Google Scholar]
  33. Gorojankina T, Hoch L, Faure H, Roudaut H, Traiffort E, Schoenfelder A, Girard N, Mann A, Manetti F, Solinas A, Petricci E, Taddei M, Ruat M (2013), Discovery, molecular and pharmacological characterization of GSA-10, a novel small-molecule positive modulator of Smoothened. Mol Pharmacol 83, 1020–1029. [CrossRef] [PubMed] [Google Scholar]
  34. Gritli-Linde A, Hallberg K, Harfe BD, Reyahi A, Kannius M, Nilsson-Janson J, Cobourne MT, Sharpe PT, McMahon AP, Linde A (2007), Abnormal hair development and apparent follicular transformation to mammary gland in the absence of hedgehog signaling. Dev Cell 12, 99–112. [CrossRef] [PubMed] [Google Scholar]
  35. Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997), Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 91, 85–97. [CrossRef] [PubMed] [Google Scholar]
  36. Hall TM, Porter JA, Beachy PA, Leahy DJ (1995), A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 378, 212–216. [Google Scholar]
  37. Hammerschmidt M, Brook A, McMahon AP (1997), The world according to hedgehog. Trends Genet 13, 14–21. [CrossRef] [PubMed] [Google Scholar]
  38. Han Y, Shi Q, Jiang J (2015), Multisite interaction with Sufu regulates Ci/Gli activity through distinct mechanisms in Hh signal transduction. Proc Natl Acad Sci U S A 112, 6383–6388. [CrossRef] [PubMed] [Google Scholar]
  39. Haraguchi R, Motoyama J, Sasaki H, Satoh Y, Miyagawa S, Nakagata N, Moon A, Yamada G (2007), Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 134, 525–533. [CrossRef] [PubMed] [Google Scholar]
  40. Hardcastle Z, Mo R, Hui CC, Sharpe PT (1998), The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 125, 2803–2811. [PubMed] [Google Scholar]
  41. Hasegawa K, Pereira BP, Pho RW (2001), The microvasculature of the nail bed, nail matrix, and nail fold of a normal human fingertip. J Hand Surg Am 26, 283–290. [Google Scholar]
  42. Hatsell SJ, Cowin P (2006), Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development. 133, 3661–3670. [CrossRef] [PubMed] [Google Scholar]
  43. Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, Salic A (2016), Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling. Cell 166, 1176–1187. [CrossRef] [PubMed] [Google Scholar]
  44. Ingham PW, McMahon AP (2001), Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15, 3059–3087. [CrossRef] [PubMed] [Google Scholar]
  45. Ingham PW, Nakano Y, Seger C (2011), Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12, 393–406. [CrossRef] [PubMed] [Google Scholar]
  46. Jacobsen CM, Narita N, Bielinska M, Syder AJ, Gordon JI, Wilson DB (2002), Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev Biol 241, 34–46. [CrossRef] [PubMed] [Google Scholar]
  47. Jiang K, Liu Y, Fan J, Zhang J, Li XA, Evers BM, Zhu H, Jia J (2016), PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail. Plos Biol 14, e1002375. [PubMed] [Google Scholar]
  48. Jiang WG, Ye L, Ruge F, Sun PH, Sanders AJ, Ji K, Lane J, Zhang L, Satherley L, Weeks HP, Zhi X, Gao Y, Wei C, Wu Y, Mason MD (2015), Expression of Sonic Hedgehog (SHH) in human lung cancer and the impact of YangZheng XiaoJi on SHH-mediated biological function of lung cancer cells and tumor growth. Anticancer Res 35, 1321–1331. [PubMed] [Google Scholar]
  49. Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP (2000), Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127, 543–548. [PubMed] [Google Scholar]
  50. Kim J, Hsia EY, Brigui A, Plessis A, Beachy PA, Zheng X (2015), The role of ciliary trafficking in Hedgehog receptor signaling. Sci Signal 8, a55. [Google Scholar]
  51. Kim JH, Huang Z, Mo R (2005), Gli3 null mice display glandular overgrowth of the developing stomach. Dev Dyn 234, 984–991. [CrossRef] [PubMed] [Google Scholar]
  52. Klejnot M, Kozielski F (2012), Structural insights into human Kif7, a kinesin involved in Hedgehog signalling. Acta Crystallogr D Biol Crystallogr 68, 154–159. [CrossRef] [PubMed] [Google Scholar]
  53. Koyama E, Yamaai T, Iseki S, Ohuchi H, Nohno T, Yoshioka H, Hayashi Y, Leatherman JL, Golden EB, Noji S, Pacifici M (1996), Polarizing activity, Sonic hedgehog, and tooth development in embryonic and postnatal mouse. Dev Dyn 206, 59–72. [CrossRef] [PubMed] [Google Scholar]
  54. Kraus P, Fraidenraich D, Loomis CA (2001), Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech Dev 100, 45–58. [CrossRef] [PubMed] [Google Scholar]
  55. Lawrie CH (2014) MicroRNAs in medicine p. 702. [Google Scholar]
  56. Lewis MT, Veltmaat JM (2004), Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 9, 165–181. [CrossRef] [PubMed] [Google Scholar]
  57. Li J, Xu J, Cui Y, Wang L, Wang B, Wang Q, Zhang X, Qiu M, Zhang Z (2019), Mesenchymal Sufu Regulates Development of Mandibular Molars via Shh Signaling. J Dent Res 98, 1348–1356. [CrossRef] [PubMed] [Google Scholar]
  58. Liem KJ, He M, Ocbina PJ, Anderson KV (2009), Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci U S A 106, 13377–13382. [CrossRef] [PubMed] [Google Scholar]
  59. Lim A, Shin K, Zhao C, Kawano S, Beachy PA (2014), Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol 16, 1135–1145. [CrossRef] [PubMed] [Google Scholar]
  60. Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C (2002), Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983. [Google Scholar]
  61. Liu C, Peng J, Matzuk MM, Yao HH (2015), Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun 6, 6934. [PubMed] [Google Scholar]
  62. Lu, CP, Polak L, Keyes BE, Fuchs E (2016), Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision. Science 354. [Google Scholar]
  63. Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EF, Covey DF, Siebold C, Rohatgi R (2016), Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. Elife 5. [Google Scholar]
  64. Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA (2003), Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045. [Google Scholar]
  65. Madison BB, Braunstein K, Kuizon E, Portman K, Qiao XT, Gumucio DL (2005), Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 132, 279–289. [CrossRef] [PubMed] [Google Scholar]
  66. Marechal R, Bachet JB, Calomme A, Demetter P, Delpero JR, Svrcek M, Cros J, Bardier-Dupas A, Puleo F, Monges G, Hammel P, Louvet C, Paye F, Bachelier P, Le Treut YP, Vaillant JC, Sauvanet A, Andre T, Salmon I, Deviere J, Emile JF, Van Laethem JL (2015), Sonic hedgehog and Gli1 expression predict outcome in resected pancreatic adenocarcinoma. Clin Cancer Res 21, 1215–1224. [CrossRef] [PubMed] [Google Scholar]
  67. McLellan JS, Yao S, Zheng X, Geisbrecht BV, Ghirlando R, Beachy PA, Leahy DJ (2006), Structure of a heparin-dependent complex of Hedgehog and Ihog. Proc Natl Acad Sci U S A 103, 17208–17213. [CrossRef] [PubMed] [Google Scholar]
  68. Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L, Scales SJ, Jackson PK (2013), The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152, 210–223. [CrossRef] [PubMed] [Google Scholar]
  69. Myers BR, Sever N, Chong YC, Kim J, Belani JD, Rychnovsky S, Bazan JF, Beachy PA (2013), Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell 26, 346–357. [CrossRef] [PubMed] [Google Scholar]
  70. Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T, Krishnan K, Ingham PW, Covey DF, Siebold C, Rohatgi R (2013), Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. Elife 2, e1340. [Google Scholar]
  71. Nguyen MB, Cohen I, Kumar V, Xu Z, Bar C, Dauber-Decker KL, Tsai PC, Marangoni P, Klein OD, Hsu YC, Chen T, Mikkola ML, Ezhkova E (2018), Publisher Correction: FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells. Nat Commun 9, 2854. [PubMed] [Google Scholar]
  72. Nishizawa T, Suzuki H, Nakagawa I, Minegishi Y, Masaoka T, Iwasaki E, Hibi T (2009), Rebamipide-promoted restoration of gastric mucosal sonic hedgehog expression after early Helicobacter pylori eradication. Digestion 79, 259–262. [CrossRef] [PubMed] [Google Scholar]
  73. Niyaz M, Khan MS, Mudassar S (2019), Hedgehog Signaling: An Achilles' Heel in Cancer. Transl Oncol 12, 1334–1344. [Google Scholar]
  74. Noman AS, Uddin M, Rahman MZ, Nayeem MJ, Alam SS, Khatun Z, Wahiduzzaman M, Sultana A, Rahman ML, Ali MY, Barua D, Ahmed I, Islam MS, Aboussekhra A, Yeger H, Farhat WA, Islam SS (2016), Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh. Sci Rep 6, 18830. [CrossRef] [PubMed] [Google Scholar]
  75. Oftedal OT (2002), The mammary gland and its origin during synapsid evolution. J Mammary Gland Biol Neoplasia 7, 225–252. [CrossRef] [PubMed] [Google Scholar]
  76. Pal K, Hwang SH, Somatilaka B, Badgandi H, Jackson PK, DeFea K, Mukhopadhyay S (2016), Smoothened determines beta-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol 212, 861–875. [CrossRef] [PubMed] [Google Scholar]
  77. Pan YB, Gong Y, Ruan HF, Pan LY, Wu XK, Tang C, Wang CJ, Zhu HB, Zhang ZM, Tang LF, Zou CC, Wang HB, Wu XM (2015), Sonic hedgehog through Gli2 and Gli3 is required for the proper development of placental labyrinth. Cell Death Dis 6, e1653. [CrossRef] [PubMed] [Google Scholar]
  78. Paus R, Muller-Rover S, Van Der Veen C, Maurer M, Eichmuller S, Ling G, Hofmann U, Foitzik K, Mecklenburg L, Handjiski B (1999), A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 113, 523–532. [CrossRef] [PubMed] [Google Scholar]
  79. Pepinsky RB, Rayhorn P, Day ES, Dergay A, Williams KP, Galdes A, Taylor FR, Boriack-Sjodin PA, Garber EA (2000), Mapping sonic hedgehog-receptor interactions by steric interference. J Biol Chem 275, 10995–11001. [CrossRef] [PubMed] [Google Scholar]
  80. Perdigoto CN, Dauber KL, Bar C, Tsai PC, Valdes VJ, Cohen I, Santoriello FJ, Zhao D, Zheng D, Hsu YC, Ezhkova E (2016), Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. Plos Genet 12, e1006151. [CrossRef] [PubMed] [Google Scholar]
  81. Petrova E, Rios-Esteves J, Ouerfelli O, Glickman JF, Resh MD (2013), Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling. Nat Chem Biol 9, 247–249. [Google Scholar]
  82. Pietrobono S, Gagliardi S, Stecca B (2019), Non-canonical Hedgehog Signaling Pathway in Cancer: Activation of GLI Transcription Factors Beyond Smoothened. Front Genet 10, 556. [CrossRef] [PubMed] [Google Scholar]
  83. Porter JA, Young KE, Beachy PA (1996), Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–259. [Google Scholar]
  84. Porter JA, Ekker SC, Park WJ, von DP, Kessler, Young KE, Chen CH, Ma Y, Woods AS, Cotter RJ, Koonin EV, Beachy PA (1996), Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21–34. [CrossRef] [PubMed] [Google Scholar]
  85. Praetorius HA, Spring KR (2005), A physiological view of the primary cilium. Annu Rev Physiol. 67, 515–529. [CrossRef] [PubMed] [Google Scholar]
  86. Qi X, Schmiege P, Coutavas E, Wang J, Li X (2018), Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature 560, 128–132. [Google Scholar]
  87. Qi X, Schmiege P, Coutavas E, Li X (2018), Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science 362. [Google Scholar]
  88. Qi X, Liu H, Thompson B, McDonald J, Zhang C, Li X (2019), Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. Nature 571, 279–283. [Google Scholar]
  89. Ramalho-Santos M, Melton DA, McMahon AP (2000), Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772. [PubMed] [Google Scholar]
  90. Rau T, Dimmler A, Hafner M, Brabletz T, Kirchner T, Faller G (2005), Aberrant expression of TTF-1 and forkhead factor HFH-4 in atrophic gastritis and ciliated metaplasia suggests gastric broncho-pulmonary transdetermination. J Pathol. 206, 383–387. [CrossRef] [PubMed] [Google Scholar]
  91. Richmond CA, Breault DT (2010), Regulation of gene expression in the intestinal epithelium. Prog Mol Biol Transl Sci 96, 207–229. [Google Scholar]
  92. Riobo NA, Haines GM, Emerson CJ (2006), Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res 66, 839–845. [Google Scholar]
  93. Riobo NA, Lu K, Ai X, Haines GM, Emerson CJ (2006), Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A 103, 4505–4510. [CrossRef] [PubMed] [Google Scholar]
  94. Robbins DJ, Fei DL, Riobo NA (2012), The Hedgehog signal transduction network. Sci Signal 5, e6. [Google Scholar]
  95. Roessler E, Muenke M (1998), Holoprosencephaly: a paradigm for the complex genetics of brain development. J inherit metab dis 21, 481–497. [CrossRef] [PubMed] [Google Scholar]
  96. Rohatgi R, Scott MP (2007), Patching the gaps in Hedgehog signalling. Nat Cell Biol 9, 1005–1009. [CrossRef] [PubMed] [Google Scholar]
  97. Rosenblum JS, Blobel G (1999), Autoproteolysis in nucleoporin biogenesis. Proc Natl Acad Sci U S A 96, 11370–11375. [CrossRef] [PubMed] [Google Scholar]
  98. Ruiz IAA, Sanchez P, Dahmane N (2002), Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2, 361–372. [Google Scholar]
  99. Samadani AA, Akhavan-Niaki H (2015), Interaction of sonic hedgehog (SHH) pathway with cancer stem cell genes in gastric cancer. Med Oncol 32, 48. [CrossRef] [PubMed] [Google Scholar]
  100. Scales SJ, de Sauvage FJ (2009), Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci 30, 303–312. [Google Scholar]
  101. Sever N, Mann RK, Xu L, Snell WJ, Hernandez-Lara CI, Porter NA, Beachy PA (2016), Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc Natl Acad Sci U S A 113. [PubMed] [Google Scholar]
  102. Sharpe HJ, Wang W, Hannoush RN, de Sauvage FJ (2015), Regulation of the oncoprotein Smoothened by small molecules. Nat Chem Biol 11, 246–255. [Google Scholar]
  103. Shimada IS, Hwang SH, Somatilaka BN, Wang X, Skowron P, Kim J, Kim M, Shelton JM, Rajaram V, Xuan Z, Taylor MD, Mukhopadhyay S (2018), Basal Suppression of the Sonic Hedgehog Pathway by the G-Protein-Coupled Receptor Gpr161 Restricts Medulloblastoma Pathogenesis. Cell Rep 22, 1169–1184. [CrossRef] [PubMed] [Google Scholar]
  104. Singh R, Dhanyamraju PK, Lauth M (2017), DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget 8, 833–845. [PubMed] [Google Scholar]
  105. Sinha S, Chen JK (2006), Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol 2, 29–30. [Google Scholar]
  106. Spencer-Dene B, Sala FG, Bellusci S, Gschmeissner S, Stamp G, Dickson C (2006), Stomach development is dependent on fibroblast growth factor 10/fibroblast growth factor receptor 2b-mediated signaling. Gastroenterology 130, 1233–1244. [CrossRef] [PubMed] [Google Scholar]
  107. Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V, Beermann F, Ruiz IAA (2007), Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci U S A 104, 5895–5900. [CrossRef] [PubMed] [Google Scholar]
  108. Stepan V, Ramamoorthy S, Nitsche H, Zavros Y, Merchant JL, Todisco A (2005), Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells. J Biol Chem 280, 15700–15708. [CrossRef] [PubMed] [Google Scholar]
  109. St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP (1998), Sonic hedgehog signaling is essential for hair development. Curr Biol 8, 1058–1068. [CrossRef] [PubMed] [Google Scholar]
  110. Strobel O, Rosow DE, Rakhlin EY, Lauwers GY, Trainor AG, Alsina J, Fernandez-Del CC, Warshaw AL, Thayer SP (2010), Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology 138, 1166–1177. [CrossRef] [PubMed] [Google Scholar]
  111. Sukegawa A, Narita T, Kameda T, Saitoh K, Nohno T, Iba H, Yasugi S, Fukuda K (2000), The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development 127, 1971–1980. [PubMed] [Google Scholar]
  112. Taipale J, Cooper MK, Maiti T, Beachy PA (2002), Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897. [Google Scholar]
  113. Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA (2000), Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009. [Google Scholar]
  114. Takizawa N, Tanaka S, Oe S, Koike T, Yoshida T, Hirahara Y, Matsuda T, Yamada H (2018), Involvement of DHH and GLI1 in adrenocortical autograft regeneration in rats. Sci Rep 8, 14542. [CrossRef] [PubMed] [Google Scholar]
  115. Tanaka Y, Okada Y, Hirokawa N (2005), FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435, 172–177. [Google Scholar]
  116. Tao Y, Mao J, Zhang Q, Li L (2011), Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer. Oncol Lett 2, 995–1001. [PubMed] [Google Scholar]
  117. Te WP, Zuniga A, Kuijper S, Drenth T, Goedemans HJ, Meijlink F, Zeller R (2002), Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298, 827–830. [Google Scholar]
  118. Ten HA, Bektas N, von Serenyi S, Losen I, Arweiler EC, Hartmann A, Knuchel R, Dahl E (2009), Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer 9, 298. [CrossRef] [PubMed] [Google Scholar]
  119. Tenzen T, Allen BL, Cole F, Kang JS, Krauss RS, McMahon AP (2006), The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell 10, 647–656. [CrossRef] [PubMed] [Google Scholar]
  120. Thesleff I, Vaahtokari A, Kettunen P, Aberg T (1995), Epithelial-mesenchymal signaling during tooth development. Connect Tissue Res 32, 9–15. [CrossRef] [PubMed] [Google Scholar]
  121. Traiffort E, Charytoniuk DA, Faure H, Ruat M (1998), Regional distribution of Sonic Hedgehog, patched, and smoothened mRNA in the adult rat brain. J Neurochem 70, 1327–1330. [CrossRef] [PubMed] [Google Scholar]
  122. Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M (1999), Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 11, 3199–3214. [CrossRef] [PubMed] [Google Scholar]
  123. Tremblay MR, Lescarbeau A, Grogan MJ, Tan E, Lin G, Austad BC, Yu LC, Behnke ML, Nair SJ, Hagel M, White K, Conley J, Manna JD Alvarez-Diez TM, Hoyt J, Woodward CN, Sydor JR, Pink M, MacDougall J, Campbell MJ, Cushing J, Ferguson J, Curtis MS, McGovern K, Read MA, Palombella VJ, Adams J, Castro AC (2009), Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 52, 4400–4418. [CrossRef] [PubMed] [Google Scholar]
  124. Tukachinsky H, Petrov K, Watanabe M, Salic A (2016), Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog. Proc Natl Acad Sci U S A 113, E5866–E5875. [CrossRef] [PubMed] [Google Scholar]
  125. Vaahtokari A, Aberg T, Jernvall J, Keranen S, Thesleff I (1996), The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54, 39–43. [CrossRef] [PubMed] [Google Scholar]
  126. van den Brink GR (2007), Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol Rev 87, 1343–1375. [Google Scholar]
  127. van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, Nielsen C, Gaffield W, van Deventer SJ, Roberts DJ, Peppelenbosch MP (2004), Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36, 277–282. [Google Scholar]
  128. Van Den Brink GR, Peppelenbosch MP (2006), Expression of hedgehog pathway components in the adult colon. Gastroenterology 130, 619. [Google Scholar]
  129. Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, Ruiz IAA (2009), Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. Embo Mol Med 1, 338–351. [CrossRef] [PubMed] [Google Scholar]
  130. Villavicencio EH, Walterhouse DO, Iannaccone PM (2000), The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet 67, 1047–1054. [Google Scholar]
  131. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996), Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622. [Google Scholar]
  132. Wang B, Fallon JF, Beachy PA (2000), Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cel 100, 423–434. [CrossRef] [Google Scholar]
  133. Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013), Structure of the human smoothened receptor bound to an antitumour agent. Nature 497, 338–343. [Google Scholar]
  134. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang XP, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V, Cherezov V, Caron MG, Roth BL, Stevens RC (2014), Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5, 4355. [PubMed] [Google Scholar]
  135. Wang LC, Liu ZY, Gambardella L, Delacour A, Shapiro R, Yang J, Sizing I, Rayhorn P, Garber EA, Benjamin CD, Williams KP, Taylor FR, Barrandon Y, Ling L, Burkly LC (2000), Regular articles: conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J Invest Dermatol 114, 901–908. [CrossRef] [PubMed] [Google Scholar]
  136. Wang Y, Zeng H, Liu A (2019), Distinct Activities of Gli1 and Gli2 in the Absence of Ift88 and the Primary Cilia. J Dev Biol 7. [Google Scholar]
  137. Wang Y, Arvanites AC, Davidow L, Blanchard J, Lam K, Yoo JW, Coy S, Rubin LL, McMahon AP (2012), Selective identification of hedgehog pathway antagonists by direct analysis of smoothened ciliary translocation. Acs Chem Biol 7, 1040–1048. [CrossRef] [PubMed] [Google Scholar]
  138. Watson CJ, Khaled WT (2008), Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135, 995–1003. [CrossRef] [PubMed] [Google Scholar]
  139. Wessler S, Krisch LM, Elmer DP, Aberger F (2017), From inflammation to gastric cancer − the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun Signal 15, 15. [CrossRef] [PubMed] [Google Scholar]
  140. Woo WM, Zhen HH, Oro AE (2012), Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev 26, 1235–1246. [CrossRef] [PubMed] [Google Scholar]
  141. Wu F, Zhang Y, Sun B, McMahon AP, Wang Y (2017), Hedgehog Signaling: From Basic Biology to Cancer Therapy. Cell Chem Biol 24, 252–280. [CrossRef] [PubMed] [Google Scholar]
  142. Wu VM, Chen SC, Arkin MR, Reiter JF (2012), Small molecule inhibitors of Smoothened ciliary localization and ciliogenesis. Proc Natl Acad Sci U S A 109, 13644–13649. [CrossRef] [PubMed] [Google Scholar]
  143. Xiao Y, Thoresen DT, Miao L, Williams JS, Wang C, Atit RP, Wong SY, Brownell I (2016), A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development. Plos Genet 12, e1006150. [Google Scholar]
  144. Xu M, Gong A, Yang H, George SK, Jiao Z, Huang H, Jiang X, Zhang Y (2015), Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44 (+)/Musashi-1 (+) gastric cancer stem cells. Cancer Lett 369, 124–133. [Google Scholar]
  145. Yao HH, Whoriskey W, Capel B (2002), Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16, 1433–1440. [CrossRef] [PubMed] [Google Scholar]
  146. Yao S, Lum L, Beachy P (2006), The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125, 343–357. [CrossRef] [PubMed] [Google Scholar]
  147. Zhang W, Kang JS, Cole F, Yi MJ, Krauss RS (2006), Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev Cell 10, 657–665. [CrossRef] [PubMed] [Google Scholar]
  148. Zhang XM, Ramalho-Santos M, McMahon AP (2001), Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106, 781–792. [CrossRef] [PubMed] [Google Scholar]
  149. Zhulyn O, Hui CC (2015), Sufu and Kif7 in limb patterning and development. Dev Dyn 244, 468–478. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.