Open Access
Issue
Regen Med Res
Volume 7, 2019
Article Number 1
Number of page(s) 8
DOI https://doi.org/10.1051/rmr/190001
Published online 05 August 2019
  1. Bardsley K, Kwarciak A, Freeman C, Brook I, Hatton P, Crawford A (2017), Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes. Biomaterials 112, 313–323. [CrossRef] [PubMed] [Google Scholar]
  2. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994), Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331, 889–895. [CrossRef] [PubMed] [Google Scholar]
  3. Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ, Detrano RC, Dunstan CR, Shah PK, Rajavashisth TB (2003), Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A 100, 11201–11206. [CrossRef] [PubMed] [Google Scholar]
  4. Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C (2018), Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9, 773. [CrossRef] [PubMed] [Google Scholar]
  5. Fujihara Y, Asawa Y, Takato T, Hoshi K (2009), Tissue reactions to engineered cartilage based on poly-L-lactic acid scaffolds. Tissue Eng Part A 15, 1565–1577. [CrossRef] [PubMed] [Google Scholar]
  6. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML (1997), Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res 339, 76–81. [CrossRef] [Google Scholar]
  7. Haberal Can I, Atilla P, Cakar AN, Onerci M (2008), An animal study on cartilage healing using auricular cartilage as a model. Eur Arch Otorhinolaryngol 265, 307–311. [CrossRef] [PubMed] [Google Scholar]
  8. Harada N, Watanabe Y, Sato K, Abe S, Yamanaka K, Sakai Y, Kaneko T, Matsushita T (2014), Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials 35, 7800–7810. [CrossRef] [PubMed] [Google Scholar]
  9. Hoshi K, Fujihara Y, Asawa Y, Nishizawa S, Kanazawa S, Sakamoto T, Watanabe M, Ogasawara T, Saijo H, Mori Y, Takato T (2013), Recent trends in cartilage regenerative medicine and its application to oral and maxillofacial surgery. Oral Sci Int 10, 15–19. [CrossRef] [Google Scholar]
  10. Hoshi K, Fujihara Y, Saijo H, Asawa Y, Nishizawa S, Kanazawa S, Uto S, Inaki R, Matsuyama M, Sakamoto T, Watanabe M, Sugiyama M, Yonenaga K, Hikita A, Takato T (2017), Implant-type tissue-engineered cartilage for secondary correction of cleft lip-nose patients: an exploratory first-in-human trial, J Clin Trials 07, 03. [CrossRef] [Google Scholar]
  11. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM (2013), Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am 95, 1312–1316. [CrossRef] [PubMed] [Google Scholar]
  12. Johnson TS, Xu JW, Zaporojan VV, Mesa JM, Weinand C, Randolph MA, Bonassar LJ, Winograd JM, Yaremchuk MJ (2004), Integrative repair of cartilage with articular and nonarticular chondrocytes. Tissue Eng 10, 1308–1315. [CrossRef] [Google Scholar]
  13. Lyons ML, Werner BC, Gluck JS, Freilich AM, Dacus AR, Diduch DR, Chhabra AB (2015), Osteochondral autograft plug transfer for treatment of osteochondritis dissecans of the capitellum in adolescent athletes. J Shoulder Elbow Surg 24, 1098–1105. [CrossRef] [PubMed] [Google Scholar]
  14. Matsuyama M, Fujihara Y, Inaki R, Nishizawa S, Nagata S, Takato T, Hoshi K (2013), Evaluation of in vivo migration of chondrocytes from tissue-engineered cartilage that was subcutaneously transplanted in mouse model. Open J Regen Med 02, 93–98. [CrossRef] [Google Scholar]
  15. Moshaver A, Gantous A (2007), The use of autogenous costal cartilage graft in septorhinoplasty. Otolaryngol Head Neck Surg 137, 862–867. [CrossRef] [PubMed] [Google Scholar]
  16. Mountziaris PM, Mikos AG (2008), Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev 14, 179–186. [CrossRef] [PubMed] [Google Scholar]
  17. Muhlfay G, Cotoi OS, Marginean C, Lostun G, Mozes H, Horvath KU (2013), Pilot preliminary study on the morpho-functional integration level of the auricle elastic cartilage transplanted in different tissue structures. Rom J Morphol Embryol 54, 763–767. [Google Scholar]
  18. Naumann A, Dennis JE, Aigner J, Coticchia J, Arnold J, Berghaus A, Kastenbauer ER, Caplan AI (2004), Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system. Tissue Eng 10, 1695–1706. [CrossRef] [Google Scholar]
  19. Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J (2002), Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br 84, 571–578. [CrossRef] [PubMed] [Google Scholar]
  20. Robla Costales D, Junquera L, García Pérez E, Gómez Llames S, Álvarez-Viejo M, Meana-Infiesta Á (2016), Ectopic bone formation during tissue-engineered cartilage repair using autologous chondrocytes and novel plasma-derived albumin scaffolds. J Craniomaxillofac Surg 44, 1743–1749. [CrossRef] [PubMed] [Google Scholar]
  21. Scotti C, Piccinini E, Takizawa H, Todorov A, Bourgine P, Papadimitropoulos A, Barbero A, Manz MG, Martin I (2013), Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci U S A 110, 3997–4002. [CrossRef] [PubMed] [Google Scholar]
  22. Takahashi T, Ogasawara T, Asawa Y, Mori Y, Uchinuma E, Takato T, Hoshi K (2007), Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng 13, 1583–1592. [CrossRef] [Google Scholar]
  23. Takahashi T, Ogasawara T, Kishimoto J, Liu G, Asato H, Nakatsuka T, Uchinuma E, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2005), Synergistic effects of FGF-2 with insulin or IGF-I on the proliferation of human auricular chondrocytes. Cell Transplant 14, 683–693. [CrossRef] [Google Scholar]
  24. Tanaka Y, Yamaoka H, Nishizawa S, Nagata S, Ogasawara T, Asawa Y, Fujihara Y, Takato T, Hoshi K (2010), The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials 31, 4506–4516. [CrossRef] [PubMed] [Google Scholar]
  25. Valcourt U, Gouttenoire J, Moustakas A, Herbage D, Mallein-Gerin F (2002), Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem 277, 33545–33558. [CrossRef] [PubMed] [Google Scholar]
  26. Woodward WA, Tuan RS (1999), N-Cadherin expression and signaling in limb mesenchymal chondrogenesis: stimulation by poly-L-lysine. Dev Genet 24, 178–187. [CrossRef] [PubMed] [Google Scholar]
  27. Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung U-i, Takato T, Hoshi K (2006), Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78A, 1–11. [CrossRef] [Google Scholar]