Open Access
Issue
Regen Med Res
Volume 6, 2018
Article Number 2
Number of page(s) 7
DOI https://doi.org/10.1051/rmr/180001
Published online 01 June 2018
  1. Natasha GAT, Gundogan B, Farhatnia Y et al. (2014), Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert Opin Biol Ther 15, 231–244. [Google Scholar]
  2. Thomas AC, Campbell GR, Campbell JH (2003), Advances in vascular tissue engineering. Cardiovasc Pathol 12, 271–276. [CrossRef] [PubMed] [Google Scholar]
  3. Ahn H, Ju YM, Takahashi H, et al. (2015), Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater 16, 14–22. [CrossRef] [Google Scholar]
  4. Hu J-J, Lu P-C, Lou C-W, et al. (2016), Small-diameter vascular grafts composed of polyester/spandex fibers: Manufacturing techniques and property evaluations. Mater Lett 171, 42–45. [CrossRef] [Google Scholar]
  5. Khatri Z, Jatoi A.W., Ahmed F, et al. (2016), Cell adhesion behavior of poly(ε-caprolactone)/poly(L −lactic acid) nanofibers scaffold. Mater Lett 171, 178–181. [CrossRef] [Google Scholar]
  6. Kuwabara F, Narita Y, Yamawaki-Ogata A, et al. (2012), Long-term results of tissue-engineered small-caliber vascular grafts in a rat carotid arterial replacement model. J Artifi Organs 15, 399–405. [CrossRef] [Google Scholar]
  7. Wang K, Zheng W, Pan Y, et al. (2016), Three-Layered PCL grafts promoted vascular regeneration in a rabbit carotid artery model. Macromolecular Bioscience 16, 608. [CrossRef] [PubMed] [Google Scholar]
  8. Tokiwa Y, Calabia BP (2007), Biodegradability and Biodegradation of Polyesters. J Polym Environ 15, 259–267. [CrossRef] [Google Scholar]
  9. Woodruff MA, Hutmacher DW (2010), The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci 35, 1217–1256. [CrossRef] [Google Scholar]
  10. Lomas AJ, Webb WR, Han J, et al. (2013), Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications. Tissue Eng Part C Methods 19, 577–585. [CrossRef] [Google Scholar]
  11. ISO 10993-12: 2009 Biological evaluation of medical devices. Part 12: Sample Preparation and eference Materials. [Google Scholar]
  12. Zhou F, Xu W, Ouyang C (2014), Biomechanics properties of small-diameter & microporous polyurethane vascular graft. J Med Biomech 23, 270–274. [Google Scholar]
  13. Hoerstrup SPZG, Sodian R, et al. (2001), Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 20, 164–169. [CrossRef] [PubMed] [Google Scholar]
  14. Loh QL, Choong C, Oxon D (2013), Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19, 485–502. [CrossRef] [Google Scholar]
  15. Peng H, Ling J, Liu J, et al. (2010), Controlled enzymatic degradation of poly(ɛ-caprolactone)-based copolymers in the presence of porcine pancreatic lipase. Polym Degrad Stab 95, 643–650. [CrossRef] [Google Scholar]
  16. Li S, Liu Li, Garreau H et al. (2003), Lipase-Catalyzed Biodegradation of Poly(E-caprolactone) Blended with various Polylactide-Based Polymers. Biomacromolecules 4, 372–377. [CrossRef] [Google Scholar]
  17. Darwis D, Mitomo H, Enjoji T et al. (1998), Enzymatic degradation of radiation crosslinked poly( ε −caprolactone). Polymer Degradation & Stability 62, 259–265. [CrossRef] [Google Scholar]
  18. Marten E, Müller R-J, Deckwer W-D (2003), Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym Degrad Stab 80, 485–501. [CrossRef] [Google Scholar]
  19. Banerjee A, Chatterjee K, Madras G (2014), Enzymatic degradation of polymers: a brief review. Mater Sci Technol 30, 567–573. [CrossRef] [Google Scholar]
  20. Oliver WC, Pharr GM (2004), Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19, 3–20. [CrossRef] [Google Scholar]
  21. Williams DF (2008), On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953. [CrossRef] [PubMed] [Google Scholar]
  22. Arrizabalaga JH, Nollert MU (2013), Human adipose-derived stem cells for a vascular graft. Circulation 22, A18465. [Google Scholar]
  23. Brennan JA, Arrizabalaga JH, Nollert MU (2012), Development of a Human Tissue-Engineered Blood Vessel from Adipose-Derived Stem Cells. Circ Res A360. [Google Scholar]
  24. Enayati M, Eilenberg M, Grasl C, et al. (2016), Biocompatibility assessment of a new biodegradable vascular graft via in vitro co-culture approaches and in vivo model. Ann Biomed Eng 44, 1–16. [CrossRef] [PubMed] [Google Scholar]
  25. Zhang HMZL (2016), Biodegradable vascular stent materials: Surface properties and biocompatibility. J ISSN 43, 2095–4344. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.