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Abstract

Myocardial infarction (MI) is associated with damage to the myocardium which results in a great loss of functional
cardiomyocytes. As one of the most terminally differentiated organs, the endogenous regenerative potentials of
adult hearts are extremely limited and insufficient to compensate for the myocardial loss occurring after MI.
Consequentially, exogenous regenerative strategies, especially cell replacement therapy, have emerged and
attracted increasing more attention in the field of cardiac tissue regeneration. A renewable source of seeding cells
is therefore one of the most important subject in the field. Induced pluripotent stem cells (iPSCs), embryonic stem
cell (ESC)-like cells that are derived from somatic cells by reprogramming, represent a promising candidate due to
their high potentials for self-renewal, proliferation, differentiation and more importantly, they provide an invaluable
method of deriving patient-specific pluripotent stem cells. Therefore, iPSC-based cardiac tissue regeneration and
engineering has been extensively investigated in recent years. This review will discuss the achievements and current
status in this field, including development of iPSC derivation, in vitro strategies for cardiac generation from iPSCs,
cardiac application of iPSCs, challenges confronted at present as well as perspective in the future.
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Myocardial infarction (MI), an ischemic heart disease
that usually leads to great loss of cardiac tissue and even
heart failure, is the leading cause of death through the
world [1]. After MI, it is impossible for ischemic heart to
restore the scarred myocardium because of its limited
regenerative capacity [2]. For the late-stage patients with
MI, the only choice is heart transplantation, which is con-
strained by the insufficiency of donor organs [3]. Recent
studies suggested that regeneration or repair of ischemic
cardiac tissue may be achieved by cell replacement, i.e.
transplantation of cells, especially functional cardiomyo-
cytes to repair or replace damaged myocardium.
Seeding cells used in cardiac regeneration must be of

multipotency, at least, into cardiac lineage. In addition, a
high capacity of self-renewal and proliferation is also
required [4]. In the past decades, many cell types have
been used for cardiac regeneration, including skeletal
myoblast, primary cardiomyocytes, mesenchymal stem
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reproduction in any medium, provided the or
cells (MSCs) and embryonic stem cells (ESCs) [5-9]. In
comparison, ESCs have many potential advantages due
to the highly proliferating and cardiomyogenic potentials
[10]. Various strategies are available to produce sufficient
ESC-cardiomyocytes (ESC-CMs) for replacement therapy
[11-14], however, the further application of ESCs in cardiac
tissue engineering is still hampered due to ethical problem,
immune response, etc. [10]. In 2006, a breakthrough has
been made that ESC-like cells have been derived from
somatic cells by ectopic expression of OCT3/4, Sox2, KLF,
c-Myc (induced pluripotent stem cell, iPSC) [15]. iPSCs
are highly similar to ESCs in biology. Under suitable condi-
tions, iPSCs could long-term propagate in undifferentiated
state or differentiate into many other cell types, including
functional cardiomyocytes [16,17]. Furthermore, the deriv-
ation of iPSCs avoid the destruction of embryos and en-
abled the possibility to obtain patient-specific pluripotent
stem cells, providing a promising resolution for clinical im-
mune responses in cell transplantation [18]. Therefore, the
development of cell reprogramming or iPSC technology
may open up a new perspective to the quickly progressing
field of cell-based therapy.
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Table 1 Development of cell reprograming

Events Time Ref.

Establishment
of iPS cells

mice 2006 [15]

human 2007 [21]

rhesus 2008 [25]

Pig, Rat 2009 [26,27]

Canine; rabbit 2010 [28,29]

Sheep; bovine 2011 [30,31]

Cell origin
for iPSCs
production

fibroblast ; 2006; [32]

skin; pancreatic beta cells;
liver, stomach, beta cells,
neural progenitor cells;
keratinocytes

2008 [33-38]

Adipose stem cells; blood;
Hemotopiotic cell;
Melanocytes; Cord blood
cells;

2009 [39-43]

dental tissues; circulating
T cells;

2010 [44,45]

endothelial cells; renal
tubular cells;

2011 [46,47]

Reprogramming
strategies

Retroviral; 2006; [15]

ectopic expression; 2007; [20]

ectopic expression;
lentiviruses; onintegrating
adenoviruses; Plamid; not
integrate; free of
exogenous genes.;

2008; [33,34,37,48-51]

polycistronic;
reprogramming proteins.

2009; [52-56]

piggyBac (PB) transposition;
nonintegrating episomal
vectors; recombinant
proteins;

‘minicircle’ DNA 2010; [57]

miRNA; 2011; [58]
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Establishment of iPS cells by cell reprogramming and
their implication for regenerative medicine
Development of cell reprogramming
The concept of induced pluripotency was not innov-
atory. Some other strategies to induce pluripotency have
been long developed, such as somatic cell nuclear trans-
fer(SCNT), fusion of somatic cells with ESCs [19].
The pioneering work of directly reprogramming som-

atic cells into ESC-like state was done by Takahashi and
Yamanaka [15]. They applied 4 factors, Sox2, Oct4, and
KLF4, c-Myc (termed Yamanaka’s factors later), out of the
screened 24 candidate genes to induce pluripotency from
mouse embryonic or adult fibroblast; the resulted cells
demonstrated a high similarity in morphology, self-renewal
and multipotency to ESCs. When performed blastocyst
microinjection, these cells formed chimeric embryos. How-
ever, the study failed to obtain live chimeric mice with the
iPSC line. Closely behind, another independent group in
America also successfully derived mouse iPSCs with the
same set of factors and further, they obtained live chimeric
mice [20]. In the same year, human iPSCs were also suc-
cessfully established [21].
The development of direct reprogramming was a mile-

stone in stem cell research. It provided an invaluable
seeding cell resource for regenerative medicine and tis-
sue engineering. Therefore, since the first derivation of
iPSCs was reported, the cells have attracted extensive
attention throughout the world. Though most investiga-
tors initially followed to use Yamanaka’ factors, it was
soon shown that not all of the 4 factors were collectively
necessary. For example, NANOG and LIN28 were dem-
onstrated to be able to replace c-MYC and KLF4, Sox1
and Sox3 can replace Sox2 [22]. Further, different group
demonstrated that omission of one or more of the 4 fac-
tors in some conditions was still sufficient to reprogram
somatic cells into iPSCs [23,24].
Different from SCNT, direct reprogramming strategy

(iPSC strategy) is more easy to apply across the species. In
the former development, it has been difficult to establish
NT-ESC lines in some species. For instance, efforts in es-
tablishing rat NT-ESCs were not successful constantly
until decade years after the strategy development, while
no human NT-ESC line has been established yet. How-
ever, the iPSC strategy was extended rapidly across species
since the initial derivation of mouse iPSCs. In less than 5
years, iPSCs were successfully derived in many other spe-
cies, including rhesus, pig, rat, canine, rabbit, Sheep; bo-
vine (Table 1). The cell origins for iPSC derivation were
also extended to a range of other cell types (besides fibro-
blasts), including pancreatic beta cells, lymphocytes, liver,
stomach, beta cells, neural progenitor cells, keratinocytes,
adipose stem cells, blood, hematopoietic cell, melanocytes,
cord blood cells, dental tissues, circulating T cells, endo-
thelial cells, renal tubular cells, ect (Table 1).
The initial development of direct cell reprogramming is
based on integrating viral vectors which integrate ran-
domly into the host genome. Risks exist for reactivation of
the viral transgenes, such as c-Myc, an oncogene whose
reactivation will result in tumor formation [15]. Moreover,
integrated provirus may change the neighboring gene ex-
pression of receipts. In 2003, Hacein-Bey-Abina and his
colleagues have already observed oncogenesis in SCID
children who had received the transplantation of retroviral
gene-modified haematopoietic stem cells [59]. Therefore,
investigators put great efforts on exploring safer vectors to
make iPSC more therapeutically applicable. In these years,
many other reprogramming vectors and methods were
appearing, mainly divided into (i) virus [33], (ii) DNA [57],
(iii) RNA [58], and (iv) protein [52]. Some researchers
established transgene excision system to generate iPSCs,
such as the Cre/LoxP recombination system [60], the
moth piggyback transposon system [53]. In these systems,
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the integrated extraneous genes would be excised after
transduction of target cells. Zhou et al. successfully devel-
oped a DNA-free strategy to generate iPSCs in which re-
combinant proteins were used instead of the transcription
factors [52]. Though the reprogramming efficiency is ra-
ther low (about 1000-fold lower than that of retroviral sys-
tem), it’s definitely an important advance in that gene
transfer is dispensed. In the most recently, RNA was also
successfully applied to generate iPSCs [58].

IPSC implication for regenerative medicine
The rapidly progressing field of iPSCs demonstrated vast
implications in regenerative medicine and tissue engineer-
ing. The high similarity of iPSC to ESC make it a potential
replacement of ESCs in therapeutic use, and many advan-
tages make it superior to ESCs:1) the derivation of iPSCs
bypass the ethical controversy surrounding ESCs whose
derivation get involved in destruction of human embryos;
2) the direct reprogramming somatic cells into ESC-like
state enable the possibility to obtain patient-specific stem
cells of highly pluripotency, providing a promising per-
spective to minimizing the immune rejection in cell re-
placement therapy. Additionally, it needs not to perform
invasive procedures to obtain candidate cell because of
the extensity of cell types suitable for direct reprogram-
ming; 3) to obtain autologous normal cells from patients
of genetic diseases. Fanconi anaemia is a disease of severe
genetic instability. Fibroblasts or keratinocytes derived
from the patients carry severe genetic defects which do
not allow patient-specific iPS cell generation. However,
the genetic defect can be corrected with lentiviral vectors
encoding FANCA or FANCD2 and corrected fibroblasts
could be induced into iPS cells as efficiently as wild-type
human fibroblasts. These iPS cells have equal capability as
normal ones to differentiate into haematopoietic progeni-
tors, whilst stably maintaining the disease-free phenotype
in vitro [61]. The similar situation also exists in many
other genetic hiPS cells. The derivation of autologous
disease-free cells from these genetic-defect patient
possess great therapeutic value when cell transplant-
ation is needed.
To date, though developed for only several years, the

great value of iPSCs in regenerative medicine and tissue
engineering has been definitely displayed at least in the
following aspects:

1) Be used as seeding cells for cell transplantation
therapy. A typical instance of iPSC therapeutic
application was Hanna J and his colleagues’ work.
They demonstrated the feasibility to correct the
defect by coupling gene targeting and direct
reprogramming using a mouse model of humanized
sickle cell anemia [62]. Similarly, Wernig and
colleagues showed that iPS-cell-derived
dopaminergic neurons could alleviate the disease
phenotype in a rat model of Parkinson’s disease [63].
In addition, it has been confirmed too that iPSC
treatment was effective for cardiovascular disease,
spinal cord injury and many other diseases [64-67];

2) Be used for human disease models. Disease-specific
iPSCs and their derivates would exhibit at least par-
tial phenotype of the disease. One typical example is
that iPSCs derivated from patients with heart disease
differentiated into cardiomyocytes which would ex-
hibit the specific disease behavior, such as long QT
syndrome, Timothy syndrome, and LEAPORD syn-
drome [68-70]. Such disease-specific cells would be
convenient and valuable in experimental research
(such as pathogenesis, physiologic properties of
these cardiomyocytes) because it is nearly impossible
to obtain abundant samples from the patients. At
present, several disease-specific iPSC line have
already been established, including juvenile onset
type 1 diabetes mellitus, Parkinson’s disease [71],
amyitrophic lateral sclerosis [72], spinal muscular
atrophy (SMA) [73];

3) Be used for high throughout drug screen. iPSCs
could differentiated into many type of functional
lineage-specific cells, which could be used for drug
screening, drug effectiveness and toxicology tests in-
stead of natural tissue. In the following part of the
review, we will focus on the current status of iPSC’s
application in cardiac tissue regeneration and
engineering.

In vitro strategies for cardiac generation from iPS cells
Of all stem cells potentially applicable in cardiac tissue
engineering, ESC represents one of the most promising
cell sources. ESCs possess potent capacities of long term
expansion and efficiently cardiomyogenic differentiation,
which allows for the creation of sufficient cardiomyo-
cytes or supportive cardiac-lineage cells, such as vascular
progenitor cells, smooth muscle cells and endothelial
cells [1]. As ESC-like state cells, the advantages of ESCs
in cardiac regeneration are manifested in iPSCs too.
The differentiation of iPSCs into cardiomyocytes in vitro

was firstly reported in mouse iPSC lines by Christina and
colleagues in 2008 [16]. The resulted cardiomyocytes
showed typical features of ES cell–derived cardiomyo-
cytes, including spontaneous rhythmical beating, expres-
sion of marker genes, expression of cardiomyocyte-typical
proteins, spontaneous rhythmic intracellular Ca2+ fluctua-
tions, presence of the β-adrenergic and muscarinic signal-
ing cascade, and so on. But in the study, iPSCs showed a
delayed and less efficient differentiation of beating EBs
compared with ESCs. Almost at the same time, Genta
et al. reported the direct and systematic differentiation of
miPSCs into cardiac lineages [74]. MiPSCs were firstly
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induced into Flk1+ cells and sorted by FACS, then purified
Flk1+ were systematically differentiated into endothelial
cells, mural cells, arterial/venous/lymphatic endothelial
cells and self-beating cardiomyocytes in different condi-
tions, respectively. Different from Christina’s report, the
differentiation properties of iPSCs observed in the study
were almost the same to that of ES cells. Followed in
2009, Jianhua Zhang et al. firstly reported the cardiac dif-
ferentiation of human iPSCs [17]. In the study, differenti-
ation properities were also compared between hiPSCs and
hESCs. The study showed that both hiPSCs and hESCs
have a similar capacity for differentiation into nodal-,
atrial-, and ventricular-like phenotypes as analysized by
electrophysiology. HiPS and hES cell-derived cardiomyo-
cytes share similar cardiac gene expression patterns, pro-
liferation, sarcomeric organizations and they exhibited
similar responsive pattern to β-adrenergic stimulation.
However, the study observed a similar phenomenon as
observed in miPSCs, that the differentiation efficiencies
of hiPSCs varied with cell lines. These studies (both on
mouse and human iPSC lines) coincidentally indicated
that cardiomyogenic potentials of iPSCs could be line-
specific.
In recent years, many other methods for differentiating

iPSCs into cardiomyocytes have been developed (Table 2).
Theoretically, any strategies and reagents differentiated
ESCs into cardiac lineage may be applied to iPSCs due to
their highly similarity. Actually, many methods used for
Table 2 Cardiac differentiation from iPSCs

Induce medium OR supplement Species Ef

IMDM Mice ~5

α-MEM and coculture Mice Un

DMEM/F12 Human ~1

α-MEM Human Un

DMEM Human Un

5-AZ or BMP-4 or DMSO Human 23

IMDM Murine Un

Ascorbic acid Mice; human Un

IMDM Mice Un

DMEM and coculture on END2 cells Human ~1

TSA Mice Un

FGF-10 Mice Un

RPMI+B27 (+Activin A/BMP4/bFGF) Human 30

Cyclosporin-A Mice Un

DMEM Mice Un

Insulin+ BMP4+FGF2 Human >9

Sulfonyl-hydrazone-1 Mice Un

DMEM, EBM-2 Mice ~4

Stem Pro-34 medium + ascorbic acid + PenStrep +
monothioglycerol + Activin A + BMP4 + bFGF

Human M
iPSC cardiac differentiation are based on the previous
studies in ESCs. BMP4 and activin A are potent factors
that induced hESCs into cardiomyocytes [14]. Therefore,
both of them are definitely candidate inducers to differen-
tiate hiPSC into cardiomyocytes. In a direct differentiation
system reported by Hideki Uosaki et al., BMP4, activin A
and bFGF were combined to induced iPSCs differentiation
[75], the induced cardiomyocytes (cardiac troponin-T –
positive) appeared robustly with 30–70% efficiency. In a
EB-based differentiation sysytem reported by Paul W.
Burridge, et al. [76], they combined BMP4, FGF2, poly-
vinyl alcohol, serum, and insulin to induced cardiac
differentiation from hiPSCs and hESCs. At optimized con-
centrations, the differentiated rates of contracting EBs
were enhanced up to more than 90%. Further, in the
contracting hEBs, 64–89% of cells were cardiomyocytes.
Many other inducers used in cardiac differentiation of
ESCs were also confirmed effective to induced cardiac
differentiation from iPSCs, including, 5-Azacytidine, as-
corbic acid, cyclosporine-A and so on (Table 2). Of note,
though the differentiation efficiencies varied among
these methods, it is difficult to determine which one is ab-
solutely superior without the direct comparison between
different methods on the same cell line, because the differ-
entiation of iPSCs toward cardiomyocytes may be cell-line-
dependent as discussed above. Interestingly, in another
report by Shinji Kaichi, et al., investigators explored tri-
chostatin A to improve iPSCs’ cardiac differentiation and
ficiency Differentiation manner Ref.

5% beating EBs EB formation [16]

clear Direct differentiation [74]

0% beating or bellow EB formation [17]

clear EB formation [79]

clear EB formation [80]

.7% of cells by 5-AZ EB formation [81]

clear EB formation [82]

clear Through Isl1(+) progenitors [83]

clear EB formation [84]

2.8±3.5% beating EBs Cell clumps [85]

clear Direct differentiation [77]

clear EB formation [86]

-70% Beating EBs Monolayer culture [75]

clear Through Flk1+ cells [87]

clear EB formation [88]

0% EB formation [76]

clear EB formation [89]

4.8% EB formation [90]

ore than 50% Direct differentiation as a monolayer [78]
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found that treating iPSCs with trichostatin A seems to be
useful to overcome cell line variation in the differentiation
efficiency [77]. The reagent only or combined with other
inducers may be promising in future application to facili-
tate cardiac differentiation of different iPSC lines, especially
those could not be substituted, e.g., patient-specific iPSCs.
Recently, Lee Carpenter et al. reported an efficient method
for iPSCs differentiation into cardiac lineages [78]. In the
study, iPSCs were differentiated as a monolayer. By com-
bining PenStrep, monothioglycerol, ascorbic acid and sev-
eral cytokines (including active A, BMP4 and bFGF), the
method yielded more 50% cardiac-lineage cells (cardio-
myocytes, endothelium or smooth muscle cells) out of
total differentiated cells. Though the method is some
complex and many inducers are involved, such a high
efficiency for cardiac cell derivation from iPSCs would
be clinically promising.

Current application of iPSC in cardiac tissue regeneration
and engineering
The application of ESCs in cardiac tissue regeneration
and engineering could be tracked back to 2002. Min JY
et al. firstly injected ESCs in a MI rat model [91], and
found that ESCs survived and regenerated cardiomyo-
cytes in recipient myocardium and significantly im-
proved heart function 6 weeks after cell transplantation.
The study demonstrated the feasibility and validity of ap-
plying ESCs for myocardial repair and regeneration.
Thereafter, the researches about ESC application in car-
diac tissue regeneration and engineering grew rapidly.
Many novel strategies emerged besides the direct trans-
plantation of ESCs to optimize the therapeutic efficiency,
such as injectable cardiac tissue engineering [9] (deliver-
ing ESCs in injectable biomaterials), pre-treatment of
ESCs before transplantation [92], genetic modification
[93], engineered cardiac tissue [94] and so on. Many
ESC-derivated cells besides undifferentiated ESCs were
explored to determine the optimal cell types, such as
ESC-derived cardiomyocytes [11], ESC-derived endothe-
lial cells [95], ESC-derived endothelial progenitors [96],
ESC-derived pluripotent cells [97], and so on. Like the
in vitro studies, the in vivo application of iPSCs in car-
diac tissue regeneration and engineering also adopt a
similar route as that of ESCs. However, as a newly emer-
ging field, iPSC-based cardiac tissue regeneration and
engineering is still preliminary.
The pioneer work that translates the concept of notion

into practice was reported in 2009 by Timothy J. Nelson
and his colleagues [64]. Within adult murine models of
myocardial infarction, undifferentiated iPSCs were intra-
myocardial delivered by needle injection. Engrafted iPSCs
restored myocardial performance, halted progression of
pathologic remodeling in infarcted hearts and regenerated
multi-lineage cardiac tissue, including cardiomyocytes
(cardiac α-actinin positive), smooth muscle cells (Smooth
muscle α-actin positive) and endothelial cells (CD31
positive). However, the observation in the study that iPSCs
did not form detectable tumors in immunocompetent re-
cipient hearts was soon disputed in subsequent reports
[98,99]. To minimize tumorigenic risk and optimize thera-
peutic efficiency of iPSCs for myocardial repair, Christina
Mauritz and colleagues explored the usage of iPSC derived
Flk+ cardiovascular progenitor cells in mouse model56.
The data presented in the study demonstrated an encour-
aging efficiency of iPSC-derived cardiovascular progeni-
tors for myocardial regeneration, but the tracking time in
the study was rather short, only 2 weeks. Whether and
how long the therapeutic benefits, as well as the survival
of grafts could be maintained are unknown and deserve
further investigation. Besides application in small animals,
the therapeutic potential of human iPSCs for myocardial
repair was also tested in higher animals (clinically more
relevant animal models) [100]. Christian Templin et al.
injected human iPSCs in pig models of MI and found that
human iPSCs could be detected for up to 15w in pig
myocardium. More importantly, they observed hiPSC-
derived endothelial cells contributed to vascularization
of infarcted myocardium.
Delivery method is a key factor that may influences

the success of cell-based therapy.
From studies described above, though delivering iPSC

with needle injection has acquired significant efficacy for
myocardial repair, the limited cell number that could be
delivered or detained in the target region is an apparent
disadvantage for injection approach. Therefore, more ef-
fective method for delivering iPSCs was also developed.
Innovative from precious studies based on needle

injection, Bo Dai and colleagues explore an tissue engin-
eering strategy to create a tri-cell patch using iPSC-
derived cardiomyocytes, endothelial cells and embryonic
fibroblasts for myocardial repair in mice, resulting in sig-
nificantly more cell survival, enhanced left ventricle (LV)
function and reduced LV fibrosis. By present, this ap-
pears to be the most successful application of iPSCs in
cardiac tissue engineering [101,102].
Overall, though the in vitro strategies on the gener-

ation of cardiomyocytes from iPSCs are rapidly progres-
sing, the in vivo application of iPSCs in cardiac tissue
regeneration and engineering is still in infancy. Compari-
son between in vitro and in vivo studies may indicate
that researchers are more cautious about in vivo applica-
tion of iPSCs. To promote the future therapeutic appli-
cation of iPSCs, more effective strategies for cell delivery
need developing, novel means to enhance the survival,
engraft and therapeutic efficiency of transplanted cells
should be explored, the long-term validation and safety
after iPSCs transplantation as well as the optimized cell
population need to be determined.
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Current challenges confronted in iPSC-based cardiac
tissue regeneration and engineering
Although many studies available supported that iPSCs
could be a potential substitution of ESCs and represent
a promising cell sources for cardiac tissue regeneration,
lots of challenges remain and must be overcome prior
their clinical applications.

1) Reprogramming efficiency is still low and
reprogramming mechanisms are not exactly elicited.
These years, though reprogramming technologies
progressed at a high-speed pace and various strat-
egies or augmented reagents appeared, the virus-
mediated reprogramming still seems to be the most
effective way. In addition, the derivation of iPSCs is
not repetitive. The number of insertions of exogen-
ous genes, the locus of gene insertion as well as the
extent of reprogramming could vary among each re-
programming, even though the original cells were
the same. One direct consequence in therapeutic use
may be that one iPSC line is effective in myocardial
regeneration and repair but another not. Actually, it
has been founded that the pluripotency, including
cardiomyogenic potential differs greatly among iPSC
lines [77]. The resolution of the problems will largely
depend on the better understanding of the repro-
gramming mechanisms.

2) Common to ESCs, the tumorigenicity is also an
obstacle preventing the further application of iPSCs.
Recently, two independent studies in mice and rats
consistently indicated that intramyocardial
transplantation of iPSCs is accompanied with a high
tumorigenic risk [98,99]. Furthermore, it seems that
iPSCs derived progenies retain tumorigenic potential
too [103]. Some investigators have tried to obviate
the tumorigenic capacity of iPSCs reprogramming,
such as excluding c-Myc in reprogramming [32].
Unfortunately, they do not work well in deed.

3) A practical strategy for iPSC differentiation and
target cell purification is needed. The differentiation
rates of iPSCs into cardiac-lineage cells varied
among strategies and cell lines, but generally, not a
single report is ideal to meet clinical standard.
Additionally, an effective and practical method for
target cell selection is desired as adverse cells could
long term exist during iPSC differentiation and may
result in unpredicted side effects after in vivo trans-
plantation [103].

4) The immunogenicity of iPSCs should be considered
renewedly. Given that iPS cells can be derived from
patients themselves, it had been considered that
iPSCs provided a possibility to overcome problems
of immunological rejection associated with cell
transplantation. However, a latest report by Zhao et el.
showed that iPSCs may possess a higher
immunogenicity than predicted and evoked immune
response even in syngeneic recipient [104]. Some
mechanisms for increased immunogenicity in iPSCs
were proposed too by the study, such as abnormal
overexpression of some genes. Accordingly, an
effective strategy to control immunogenicity of iPSCs
in reprogramming is indispensable on their way to
clinical practice, and each iPSC line need to be strictly
examined before transplantation, including patient-
specific iPSCs.

In addition, there are also several fundamental chal-
lenges common to iPSCs and other cells in cardiac appli-
cation, e.g., it has been reported that ESC-CMs possessed
a low capacity for electrophysiological integration [105];
which could be an obstacle too for iPSC-based myocardial
repair. Other challenges include poor retention and sur-
vival of transplanted cells in target regions, long-term effi-
cacy, arrhythogenic risk, and so on.

Perspective and conclusion
Just within six years, the experimental achievements in
iPSC research have generated great expectations in both
clinicians and patients. At present, the iPSCs have been
beginning contributing to the treatment of cardiovascu-
lar and other diseases. On one hand, the disease models
established from iPSCs have been confirmed effective
and used for research of physiologic properties, patho-
genesis of some diseases, including heart disease (e.g.
Timothy syndrome), nervous system diseases(e.g. Par-
kinson’s disease) and many other genetic diseases. On
the other hand, iPSCs have already been used in the
drug screening for disease treatment [106,107]. Despite
these progresses, the therapeutic application of iPSCs
for MI is still at an early stage (limited in animal models),
no clinical application of iPSCs has come true. Thus, more
effects are still needed to derive clinical-grade iPSC lines
and overcome so many challenges.

Conclusion
In summary, the iPSC research has been progressing
with an amazing speed from the first onset, encouraging
achievements have been unceasingly emerging and all
these are just the start. Current problems referring to
iPSC application in cardiac regeneration as well as in
other areas of regenerative medicine should be looked
with optimism. The scientific community is sparing no
effort to push the advancements in iPSC basic research
and its clinical use. Several novel techniques have also
demonstrated promising perspectives related to the reso-
lution of relative problems, such as novel chemicals/com-
pounds or systems to enhanced reprogramming efficiency
[108]; novel reprogramming notion to avoid tumorigenicity
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[109,110]. Meanwhile, it should be objectively looked that
each small step toward clinic would depend on the tremen-
dous efforts in basic research. Despite the remarkable
achievements in iPSC research within such a short time, it
should be said that there is still a long way to go and many
barriers to overcome before the true realization of iPSC ap-
plication in clinical practice.
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